42 research outputs found

    Myofibre Segmentation in H&E Stained Adult Skeletal Muscle Images using Coherence-Enhancing Diffusion Filtering

    Get PDF
    BACKGROUND: The correct segmentation of myofibres in histological muscle biopsy images is a critical step in the automatic analysis process. Errors occurring as a result of incorrect segmentations have a compounding effect on latter morphometric analysis and as such it is vital that the fibres are correctly segmented. This paper presents a new automatic approach to myofibre segmentation in H&E stained adult skeletal muscle images that is based on Coherence-Enhancing Diffusion filtering. METHODS: The procedure can be broadly divided into four steps: 1) pre-processing of the images to extract only the eosinophilic structures, 2) performing of Coherence-Enhancing Diffusion filtering to enhance the myofibre boundaries whilst smoothing the interior regions, 3) morphological filtering to connect unconnected boundary regions and remove noise, and 4) marker controlled watershed transform to split touching fibres. RESULTS: The method has been tested on a set of adult cases with a total of 2,832 fibres. Evaluation was done in terms of segmentation accuracy and other clinical metrics. CONCLUSIONS: The results show that the proposed approach achieves a segmentation accuracy of 89% which is a significant improvement over existing methods

    Modelling mammographic microcalcification clusters using persistent mereotopology

    Get PDF
    AbstractIn mammographic imaging, the presence of microcalcifications, small deposits of calcium in the breast, is a primary indicator of breast cancer. However, not all microcalcifications are malignant and their distribution within the breast can be used to indicate whether clusters of microcalcifications are benign or malignant. Computer-aided diagnosis (CAD) systems can be employed to help classify such microcalcification clusters. In this paper a novel method for classifying microcalcification clusters is presented by representing discrete mereotopological relations between the individual microcalcifications over a range of scales in the form of a mereotopological barcode. This barcode based representation is able to model complex relations between multiple regions and the results on mammographic microcalcification data shows the effectiveness of this approach. Classification accuracies of 95% and 80% are achieved on the MIAS and DDSM datasets, respectively. These results are comparable to existing state-of-the art methods. This work also demonstrates that mereotopological barcodes could be used to help trained clinicians in their diagnosis by providing a clinical interpretation of barcodes that represent both benign and malignant cases
    corecore